
 
Abstract— Edge computing is an important pillar for green 

computation by bringing the Cloud resources to the Edge, serving 
real-time applications, and reducing the computing and network 
resources required to transfer data for processing in the Cloud. 5G 
brings network densification and enables massive IoT and V2X 
applications, which triggers the need for edge computing to host 
network functions and user-facing services in a converged edge 
platform(s). Several edge computing deployments are being 
observed by ecosystem players (telco, ISVs, chip vendors, CSPs, … 
etc.) for IoT or V2X services, however, focusing on converged 
network functions and services. The point that is still in its early 
stages is the dynamic workload orchestration across the converged 
edge platforms running network functions and multi-tenant IoT 
services with different compute requirements and different 
Service Level Objectives (SLOs). This paper focuses on 
autonomous life cycle management for converged edge platform(s) 
to enable resource-efficient workload orchestration, contributing 
to the green goal. We present a solution for intelligent dynamic 
resources configuration on edge computing platforms hosting 
multi-tenant services while guaranteeing the SLO for each service 
and helping green communication goal. The presented solution has 
been deployed in a trial, and we present results on efficient 
resources configuration. 

  
 
 

I. INTRODUCTION 
HE cloud in the past two decades allowed applications and 
data to be accessed from anywhere, following a centralized 

approach for ubiquitous services access and for efficient use of 
resources. However, the increase in networking and 
connectivity capabilities that we observe with 5G [1] and the 
continuous growth of IoT and V2X services, led to the 
generation of a considerable amount of upstream data to the 
Cloud applications as well as downstream data to end-users. 
Consequently, the paradigm of centralizing applications 
infrastructure at the Cloud for resources efficiency does not 
hold anymore as a considerable amount of network and 
communication resources become a prerequisite to provide a 
data pipe to the Cloud, which consumes compute resources. 
Besides, the nature of the new applications requires more and 
more real-time processing. All this led to the proliferation of 
edge computing, shifting from centralized to distributed and 
saving network and communication resources.  

5G and edge computing offers a converged compute plus 
communication infrastructure for cloud-native applications for 
new services and software-defined network functions. This 
creates value across chip manufacturers and platform vendors, 
telco, CSPs, hyperscalers, SW vendors (ISVs), and System 
Integrators (SIs) who contribute to the creation of the edge 
computing HW and SW infrastructure [2]. 

Edge computing allows for ultra-low latency response times 
and enhanced bandwidth availability compared to conventional 
centralized computation models. Additionally, edge computing 
helps compliance to data use policies – for example data is 
constrained to remain within a certain location or when data 
must be processed locally because the cost of transport or 
transport time is prohibitive. Services that use the edge include 
but are not limited to traditional network functions, connected 
self-driving cars, video surveillance, IoT analytics, video 
encoding, video analytics, speech analytics or retail services, 
among others. The following are the most representative use 
cases and services [3, 4] for the converged edge computing 
platforms: 

• Network Functions Virtualization (NFV) [5], such as 
vRAN and ORAN, where the required resources are 
mainly CPU, FPGAs, and smart NICs.  

• Content Delivery Networks (CDN), where the 
required resources at the Edge are mainly storage, 
CPUs, GPUs, smart NIC, and network bandwidth. 

• Smart Manufacturing [6, 7], such as automated defect 
detection, automated guided vehicles (AGV), factory 
remote control, where the required resources at the 
Edge are mainly CPUs, communication, FPGAs, 
accelerators. 

• Video Analytics, such as monitoring and surveillance 
applications, where the required resources are CPUs, 
storage, and accelerators (e.g., GPUs and VPUs).  

• AR/VR and Gaming that require images processing, 
transcoding, stitching, and annotations with overlaid 
images, where the resources required are CPUs, 
communications, and accelerators (e.g., GPUs and 
VPUs). 

• Connected and Autonomous Vehicles [8, 9], such as 
V2X and V2V applications for safety, traffic 
information, interactive maps, and passengers’ 
entertainment, where the required resources are CPUs, 
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communications, and accelerators (e.g., GPUs and 
VPUs). 

• Retail, such as shelves monitoring, self-checkout, cash 
desk monitoring, where the required resources are 
CPUs, communication, and accelerators (e.g., GPUs 
and VPUs). 

• Health and Medical Applications [10, 11], such as 
digital imaging, tele-health, and remote surgery, where 
the required resources are CPUs, real-time and time-
sensitive communication, accelerators (e.g., GPUs and 
VPUs). 

• Smart Cities and Government Applications, such as 
connected transportation, smart traffic lights, traffic 
management, smart intersections, where the required 
resources are CPUs, communication, and accelerators 
(e.g., GPUs and VPUs). 

• Audio AI [12], such as speech recognition and natural 
language processing for automation, interactive 
experience, and chatbots, where the resources required 
are CPUs, FPGAs, and AI accelerators. 

 
These different services have different requirements in terms 

of edge location (and hence form factors), performance (and 
therefore compute resources), QoS, SLOs, data storage and 
sharing policy, and security. This creates a hard need for 
intelligent life cycle management of the edge applications, 
where end-to-end orchestration is crucial to meet the 
applications requirements and SLOs while continuously 
adjusting the platform and system parameters to ensure efficient 
usage of computing resources. Intel platforms provide a unique 
and wide range of control knobs that enable orchestrators with 
the ability to dynamically adjust the QoS of the applications 
while providing excellent performance predictability in shared 
and constrained environments.  

This paper focuses on autonomous lifecycle management for 
green edge computing platforms through dynamic and 
intelligent orchestration allowing efficient use of resources 
while guaranteeing Service Level Objectives (SLOs) across a 
set of diverse services. The rest of this paper is organized as 
follows: Section II discusses the related work on resources 
orchestration in edge computing and frames the context of the 
proposed work, Section III shares the services orchestration 
known models, and Section IV presents the solution we bring 
for autonomous life cycle management across the converged 
edge platforms. Based on a real deployment as described in 
Section V, we showcase results in Section VI, and we conclude 
the paper in Section VII.  

II. BACKGROUND AND RELATED WORK 
To pave the way for MEC deployment with 5G 

infrastructure, several efforts focused on services orchestration. 
The European Telecommunications Standards Institute (ETSI) 
has standardized the reference architecture for NFV 
management and orchestration [13]. MEC services and NFV 
functions are considered in [14] through a common framework 
to help network functions and services convergence, and [15] 

adopts the ETSI NFV MANO framework and expands it to Fog 
Computing to enhance the orchestration decision making.  

The centralized and distributed management schemes in Fog 
Computing are studied in [16], focusing on network usage and 
latency, which showed that distributed management performs 
better, especially when the number of sensors connected to the 
Fog node is low. Distributed resource allocation and 
orchestration is presented in [17, 18], seeking the optimal 
partitioning of shared resources between different applications 
running over a common edge infrastructure, through a service-
defined approach to orchestrate cloud/edge services, allowing 
each application to define its own orchestration strategy with 
declarative statements.  

The 3rd party MEC renting infrastructure is considered in 
[19], and a MEC broker is introduced to handle the access 
policies/privileges across the tenants and allocate resources in 
compliance with each tenant SLA. A fuzzy-logic based 
approach is introduced in [20] for workload orchestration 
across the edge computing infrastructure for processing tasks 
from mobile devices. Edge/Cloud interoperability is also 
considered in [21] by proposing a toolkit to interact with 
multiple Cloud and Edge platforms in real-time and provide 
rule-based engine to specify underutilization and 
overutilization, which helps switching-on/switching off 
resources. In addition, orchestration within CDN is considered 
in [22] introducing virtual CDN (vCDN) with SW defined 
features to split caching and streaming across the shared 
resources, which allows the maximization of the QoS and the 
optimization of the limited edge resources. 

For IoT deployment scenarios, services orchestration for IoT 
mobile networks is introduced in [23] through dynamic 
hierarchal orchestration algorithms and blockchain and 
reinforcement learning to allow trusted resource sharing and 
automatic adjustment. Several efforts consider resource 
orchestration for IoT edge gateways considering event driven, 
publish-subscribe mechanisms. [24] presents a light-weight 
service lifecycle management for containers workload in 
industrial IoT, helping service deployment, updating, and 
terminating across IoT gateways in smart factories. In [25] an 
edge computing solution is presented for resource management 
between IoT gateways, considering the context from data 
streams and the resources on IoT gateways and connection 
topology. 

Moreover, several orchestration frameworks exist within the 
open source community for cloud-native applications 
orchestration in the Cloud and at the Edge, such as OpenStack 
[26], Kubernetes [27], Mesos [28], and Akraino [29]. 
Expansion of the Kubernetes scheduler is presented in [30] for 
dynamic orchestration based on real-time resources status, 
where the scheduler uses status data from the cluster nodes to 
decide on workload orchestration based on a measure of the 
actual current load and the requirements of new containerized 
applications (a.k.a, PODs).  

The existing efforts in research, standards, and open source 
frameworks consider workload orchestration from the 
following specific standpoints: (i) orchestration of NFV 
workload, (ii) orchestration of workload across IoT gateways or 



edge computing server through hierarchal load balancing across 
multiple edge platforms/IoT gateways, (iii) orchestration of 
workload through resources division across multiple types of 
services (e.g., content streaming and content caching in CDN), 
and (iv) orchestration of workload across the shared resources 
in edge platform(s) through holistic knowledge on the resources 
over utilization/underutilization. Existing solutions fall short to: 
(i) provide workload orchestration through real-time and 
dynamic knowledge on each edge platform utilization in a very 
fine-grained manner across all HW elements in the platform, 
and (ii) associate this real-time, dynamic, and fine-grained 
platform HW utilization knowledge with the Service Level 
Objective (SLO) of each workload to setup in real-time the right 
HW configuration for each workload. The solution we provide 
in this paper alleviates this limitation and satisfies (i) and (ii). 

III. SERVICES ORCHESTRATION MODELS 
The diverse services enabled by edge computing platforms 

vary in their requirements in terms of:  
(i) Power, cooling and form-factor constraints, which in turn 

dictate how many resources can be placed in a particular 
location and how ambient conditions may influence how those 
resources behave or even their availability (e.g., solar power-
based deployment),  

(ii) Performance and QoS, where data for an autonomous car 
may have higher priority than a temperature sensor in terms of 
the response time requirement. Depending on each application, 
the possible performance bottlenecks can be a combination, of 
computing resources, memory, storage, and network, 

 (iii) Reliability and Resiliency, where some input streams 
need to be acted upon and the traffic routed with mission-
critical reliability, whereas some other input streams may be ok 
to tolerate an occasional failure. Again, this is going to depend 
on the application, and 

(iv) Security, where data protection policies, service isolation 
and attestation vary per service and location.  

To meet the above requirements  adaptively for each service, 
we expand the Orchestration definition to be the management 
of the services workload placement and processing through 
dynamic and intelligent resources configuration to meet the 
services level agreement. We consider single-site orchestration 
as well as multi-site orchestration.  

A. Single-Site Orchestration 
In this case, services, resources & infrastructure are deployed 

within a single Point of Presence (PoP) or a close geo-
proximity. As most deployments will be hierarchically 
managed, the orchestration & management stack needs to 
adhere to the higher-level components' requirements and 
policies in the stack.  

 

 
Fig. 1. Single-Site orchestration Example – showcasing multi-node 

deployment; Note that the control plane and its components can also  run on a 
single node. 

 
Fig 1. illustrates the flows and components of an 

orchestration and management stack in Single-Site deployment. 
It follows a classical Controller-Worker architecture and can be 
mapped to various orchestration solutions, such as, but not 
limited to, OpenStack [26], Kubernetes [27], and Mesos [28]. 
Furthermore, it is key that workloads define their Service Level 
Objectives (SLOs) and enable their continuous observability. 
This can be achieved through the right extensions to the 
manifest that are being used to deploy/provision the services. 
The provided SLOs can hence be monitored by the 
orchestration stack in place. The example in the Fig 1. shows a 
deployment with multiple compute nodes, it is possible to have 
single node configuration.  

The footprint of the orchestration stack itself can vary while 
offering the same kind of interface. For example, Kubernetes 
K3s can be used on smaller devices, while providing similar 
functionalities. Controllers and schedulers are key components 
to translate SLOs into specific policies, while a set of agents 
and drivers enable the same.  

To enable service performance and enable service assurance 
some key technologies are required: (i) Enablement of 
acceleration technologies and platform features within the 
orchestration in management stack, and (ii) Support for high 
precision orchestration and scheduling through (longer) 
running observations in a background flow, and a runtime 
driven foreground flow that deals with fine grained service 
request and re-balancing decisions.  
 

B. Multi-Site Orchestration 
Fig 2. Illustrates an example of multi-site orchestration. In 

this case, services, resources & infrastructure are deployed 
across multiple PoPs, where PoPs could eventually be mobile. 
A hierarchical, top-down management approach is required, 
where the following key requirements play a role when dealing 
with Multi-Site deployments: (i) Support for hierarchical 
management, (ii) Support for integration of various resource 
orchestration technologies/revisions, and (iii) Support for E2E 
orchestration for optimal placement/scheduling of service 
components considering resource constraints, data locality and 
SLO requirements. 



 
Fig. 2. Multi-Site orchestration & management flows – Akraino [29] reference 

solution example 
 
From an E2E perspective and service assurance and enabling 

high QoS levels, it is key that the right policies and setting are 
translated from the top-down and broken down into individual 
policies and settings for the individual components. Overall 
monitoring and Service Level Agreement (SLA) management, 
Rating, Charging & Billing (RCB), and the possible 
remediation on SLA violation need to be handled in a top-down 
manner. This requires that the individual single-sites report the 
right (and enough information) to the higher layers.  

IV. AUTONOMOUS LIFECYLE MANAGEMENT  
There is key motivation for autonomous lifecycle 

management for edge computing services. Today, independent 
software vendors (ISVs) and users are facing the challenge of 
developing and managing services at the edge. Edge 
infrastructure owners and current edge orchestration stacks 
assume that end-users will provide the resource requirements 
needed when a service needs to be launched at the Edge.  Hence, 
a typical interface to launch an edge service would encompass: 
(i) The service itself that can be in different types of forms: 
binary, docker (descriptor, image or tag) or virtual machine, (ii) 
Potential list of data providers or users to be connected to the 
service, which can be a list of streams from specific cameras, 
IoT sensors using Messaging Queueing Telemetry Transport 
(MQTT) to provide data for instance from a factory, end-users 
streaming content from the service etc., (iii) Potential network 
latency and bandwidth requirements, and (iv) List of resources 
and resource requirements needed for the service, which 
typically includes a list of CPUs, accelerators, memory capacity 
and storage capacity, and other resources that can be potentially 
needed. 

On the one hand, it is not straightforward for the ISVs or 
users to provide most of these requirements as they are 
associated with the use cases and are service domain specific. 
On the other hand, providing details on resources 
types/requirements is extremely complex for several reasons: 
(i) the current number of combinations of different type of 
processors (and the corresponding SKUS and different 
configurations) and other family of technologies (fabric, 
storage, accelerator etc.) can easily exceed thousands of 
potential edge appliances.  This makes it impossible to 
understand how many resources are needed for a particular 
service to achieve the SLO in all the different possible 
combinations. (ii) Edge is a dynamic live system, which implies 
that applications may migrate from one location to another with 

other platform and resources. Hence, it’s not feasible to expect  
the end user to know where the application will land or move 
as services may land or migrate to all the various edge 
platforms. This implies that loads on different edge platforms 
may vary and may require increasing resource assignment to 
critical workloads to keep with the SLO.   

Another big challenge for the solution providers is that each 
edge infrastructure owner provides different ways to on-board 
applications. This implies that ISVs and other ecosystem 
players need to make a substantial amount of integration and 
interoperability effort every time they aim to show a new 
provider. This obviously does not scale and does not allow 
efficient maintenance and improvement for the applications. 

The goal of the autonomous lifecycle management is to 
abstract as much as possible to the ISVs and other solution 
providers the complexity of the end to end edge architecture and 
mitigate the discussed challenges, through mainly: (i) 
Infrastructure abstraction, where services are not required to 
understand the available edge platforms and technologies up to 
a certain degree, but can be as optimized to utilize certain 
technologies when they are available (e.g., acceleration with 
AVX512, or a specific type of accelerators). (ii) Services 
description, where services provide to the infrastructure the 
required SLO to implement the use cases. Examples can be for 
instance that a video analytics workload can process N number 
of frames per second.  

The autonomous lifecycle management that we present in 
this section provides real-time telemetry during the services 
lifetime, which the edge infrastructure can use to validate the 
SLO. The first level of orchestration occurs through automatic 
discovery of the resource requirement and the SLOs 
requirement for the on-boarded services. Then, the edge 
computing infrastructure with the edge stacks considers the 
real-time telemetry from the services to identify any SLO 
violation and decide whether to provide additional resource 
allocation to a particular service or migrate it. 

A. Solution Architecture  
The architecture’s objective is to standardize services on-

boarding at the edge and the interfaces between the services and 
the Edge platforms to perform the applications lifecycle 
management.  

 

B. Detailed Building Blocks in the Solution 
Fig. 3 illustrates the building blocks to address autonomous 

lifecycle management. The left part of the figure shows the 
discovery of the service’s golden configuration profile. Its main 
objective is to discover, per each potential platform flavor (e.g., 
Xeon SP or Xeon SP + accelerator) the minimum needed 
resources for a particular service to satisfy the required SLO. 
The following subsection provides an example of how to 
implement such building blocks. These building blocks are part 
of the edge computing infrastructure that is abstracted to the 
end-users and ISVs. 

 



 
Fig. 3. Building Blocks – Case of Local Edge 

 
The right part of Fig. 3 shows the actual orchestration 

building blocks and basic flows. The orchestration schemes use 
the golden configurations to decide resource selection and edge 
platforms selection depending on the desired amount of 
workload units (e.g., the need to process ten cameras 
performing anomaly detection). The lifecycle management of 
the service performed by the orchestration architecture is based 
on the application real-time KPIs provided by service. 

 

 
Fig. 4. Building Blocks – Case of Multi-Edge 

 
Fig. 3 shows the architecture for a local deployment. For 

instance, it could be in a single edge appliance associated with 
an on-premise or private-5G type of deployment model (e.g., 
surveillance with a single edge platform performing the stream 
processing). However, in most edge deployments, the 
expectation is to have multi-tier edge appliances, where 
services can move from one location to other locations 
depending on the application performance or changes in the 
infrastructure (e.g., reduced network load). In this case, as 
shown in Fig. 4, there will be an interplay between a local edge 
orchestrator and a multi-tier edge orchestrator. For instance, if 

local orchestrator cannot make the service meet the required 
SLO it can work with the multi-tier orchestrator to migrate the 
service into another location.  

 
 

C. Autonomous Lifecycle Management – Full View  
As shown in Fig. 5, service life-cycle flow would take place as 
follows: (i) The orchestration entity running on that appliance 
is required to instantiate a specific service with a particular 
amount (which could be provided for instance with a set of data 
streams to connect). (ii) Based on the golden configuration and 
the available resources, the orchestrator will select the right 
service configuration and platform resources to satisfy the SLO 
associated with the service and based on the required quantity. 
For instance, if 10 streams at 1080 are provided to the service, 
and the service has associated 0.5 cores and 200 MB/s of 
memory bandwidth per stream to keep the SLO, the 
orchestrator may select 5 cores and allocates 2 GBS to those 
cores as starting point. (iii) Once the resources are selected, the 
orchestration logic will instantiate the service (configuring the 
data streams properly). (iv) Once the service is instantiated and 
starts reporting the real time application KPIs, the orchestration 
logic is responsible to monitor that the SLO is not broken. (v) 
If the SLO is broken, the orchestration logic may decide to 
allocate more resource or notify that the SLO cannot be 
achieved with the current load.  There are multiple ways to 
identify what resources cause a bottleneck and need to be 
allocated (e.g., using Top-down Micro-architecture Analysis 
Method “TMAM“ metrics or finger printing techniques). Our 
reference implementation provides a ML- based technique. 
 

In many cases, the architecture will be composed of multiple 
edge appliances managed by an end-to-end orchestration, 
managing the end to end architecture at a higher level. Fig 4. 
shows an expansion of the previous scenario. In this case, the 
golden configurations may be hosted and managed by the 
higher orchestration entity and provide the resources required 
by the services and the SLO to the lower orchestration entity. 

V. IMPLEMENTED ARCHITECTURE  
This section provides a description of a deployment scenario 

that has been implemented based on the autonomous lifecycle 
management solution and architecture described in Section IV. 

A. Cellnex Green Edge Architecture 
The Cellnex Mobility Lab in Castellolí, near Barcelona 

(Spain), focuses on developing vehicular use cases. The lab 
results from the digital transformation of Circuit Parcmotor 
Castellolí, which has been converted into an innovative 
technology center that supports experimental living-labs for 
smart mobility and connected/autonomous vehicles. 

The Mobility Lab develops 5G-based sustainable, connected, 
and autonomous mobility solutions for vehicles, traffic 
management, and road infrastructure. This represents an 
innovative area to test and develop new technological solutions 
and services advancing connectivity, especially in rural 
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environments. 
The racetrack has been equipped with several self-sustaining 

sites to support the Vehicle-to-Everything (V2X) wireless 
network that provides coverage to the whole circuit, allowing 
connectivity between vehicles, vehicles to infrastructure 
connectivity  (high-definition cameras for monitoring vehicles 
on the track, environment sensors, IoT,…) for monitoring 
vehicles on the track and on-board units for transmitting 
telemetry, voice and video data. 

The self-sustaining Green Edge sites are powered by 
renewable energy: in this case, the communication towers are 
equipped with wind turbines and solar panels and extended 
batteries to store the electricity generated on-site (no grid 
connection). The towers are interconnected using radio links, 
and therefore, there is no need for power cables nor fiber links 
between them. 

One of the big challenges for this type of deployments is 
managing power consumption while keeping the right service 
level objective for the edge services running on the appliance 
and the service level objective that infrastructure stacks (such 
as vRAN) need. The architectural approach that we present 
addresses the previous challenge by reducing the gap between 
service and infrastructure flows. 

 

 
Fig. 5. Overview of the deployment scenario  

B. Deployed Scenario Description 
Fig. 5 illustrates the deployment scenario, which 

comprehends three main parts: (i) Global end to end multi-
orchestrator that performs the edge appliance allocation when a 
service needs to be instantiated. Once the service is instantiated, 
it may receive a request from the lower orchestration entity 
running on the selected appliance if the SLO associated to the 
service cannot be met. (ii) Lower level orchestration stack 
comprising of Kubernetes using Docker and Prometheus 
application expansions that allow for reporting run-time 

telemetry corresponding to the SLOs defined at the submission 
time. (iii) The lower-level objective driven orchestration 
extension to the Kubernetes control plane tracks the service 
KPIs as reported, against SLO and potentially applies resource 
enforcement. (iv) The smart power management agent is 
responsible for predicting and managing the power at the 
system level to make solar-based edge appliances last. 

C. Multi-tier orchestration  
The global end to end multi-tier orchestrator is Nearby One 

[31]. A solution composed of two main elements: 

• The Nearby Orchestration Platform: the main 
component of the solution, which runs in a central 
location and performs all the tasks related to the 
orchestration of applications and edge infrastructure. 

• The Nearby Blocks: are distributed components that 
encapsulate logic and code for different application-
specific functionalities.  

The solution natively integrates with third party Virtual 
Infrastructure Managers (VIM), like OpenStack or VMware, 
and extensively supports the integration of Docker containers 
into both VIMs (containers in VMs) and bare metal servers. In 
this case, the applications are shipped as Docker containers and 
are deployed on emulated edge servers (VMs) that are treated 
as bare metal servers. Nearby One is also capable of 
provisioning and monitoring the infrastructure if needed, what 
is particularly relevant for low-end deployments in the ultra-far 
Edge, where no resources are available to run large VIMs. 

Edge Applications, as deployed by the Nearby One solution, 
are encapsulated into Nearby Blocks to extend the ETSI MEC 
standard's capabilities. Application ecosystems require inter-
application communication and accurate placement decisions, 
and they usually require advanced tuning of their execution 
platform. Each Nearby Block contains the application logic 
(containers or VMs provided by a third-party vendor), and they 
are encapsulated with a set of auxiliary components that provide 
the means for the application to be effectively managed, 
including: 

• Application performance KPIs for continuous SLA 
assessment (not only network-centric metrics). 

• Application health/status KPIs for continuous 
lifecycle monitoring and management. 

• Application capabilities dynamically exposed at 
deployment time (e.g., services exposed by the 
application for external consumption, like an output 
video feed, or a third-party management dashboard). 

• Correlation of application KPIs and platform 
(processor, accelerators, memory, storage) for more 
effective MEC platform management. 

D. Local object driven orchestration 
We’ve made the following extensions to the Kubernetes 

control plane to be able to manage the objectives of a 
service/workload. These extensions include the following 
additional components (marked in red in Fig. 9) to the 
Kubernetes control plane:  
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• A (set of) telemetry/monitoring databases/sinks, 
where the platform's information and/or the service are 
stored. We use InfluxDB [32] instances from the 
service mesh Linkerd [33] and a standalone instance 
for storing information for our reference 
implementation.  

• A database that stores the effects of orchestration 
actions / resource allocations have on the workload’s 
objectives. In the initial reference implementation, we 
use MongoDB [34]. 

• A planner component, which can reason over the 
effect orchestration activities / resource allocation 
have on the objectives in place. It manipulates/changes 
the configurations of the workloads in place. 

• A set of agents running on the nodes in the cluster, 
which can instrument the infrastructure and change 
resource allocation settings accordingly. In this 
reference implementation OPNFV Barometer’s [35] 
collectd is used for telemetry, while a set of scripts is 
being used to manipulated resctrl [36] filesystem’s 
schemata that are otherwise can be under control by 
CRI-RM [37].  

Fig. 9 shows the high-level flows as also defined in [38]. In 
a foreground flow the user requests the deployment of a 
workload in combination with the associated objectives. The 
objectives are defined in terms of latency, availability, and 
throughput, which can be accompanied by violations budgets 
defining how often / how long an objective can be “violated”. 
This is achieved by leveraging Kubernetes Custom Resource 
Definitions [39]. In a continuous running background flow, the 
planner observes the current state of the workload instance’s 
(For example Kubernetes PODs as part of a 
ReplicaSet/Deployment) objectives and matches it against the 
desired state. This follows the default Kubernetes operator 
design pattern. The state is defined by the objectives associated 
with the workload instances, and the planning algorithms 
determine if any mitigation actions needed to be done (For 
example to minimize resource usage or optimize the 
configuration to better match desired state). The plan that is 
being derived can incorporate preferences from the resource 
owner in the form of tunable cost/utility functions. Possible 
actions include – but are not limited to – scaling out, removing 
“unreliable” PODs, tuning the associated  Memory bandwidth, 
switching profiles, or changing of resource assignments. The 
resulting plan is executed upon by the K8s control plane – and 
if required the scheduler will place PODs according to the 
updated configurations. While the planner is in charge of 
translating the SLOs into actionable plans and defining 
what/how to set up the systems, it is the scheduler's 
responsibility to determine when/where to place the workloads 
according to the provided information in the deployment 
configuration. 

 

 
Fig. 9. Foreground and Background Flow 

 
Furthermore, in the background flow the effect’s database is 

continuously being updated. Models that are either hand-tuned 
or machine-learned describe the effect actions have on the 
objectives of the workload. These models are being re-trained 
as new data from the telemetry systems becomes available. This 
enables tracking for workload changes, infrastructure changes 
and their behaviors over time. This also assures that various 
workload’s characteristics will lead to a different set of useful 
actions. For example, a cache sensitive workload will react to 
cache tuning, while a micro service might benefit more from 
scaling out actions.  

E. Power management 
The power management solution is Lenovo Smart Power 

Agent. The Agent is composed of four main elements:  

• The input module: It is responsible for collecting 
telemetry from the platform and the services of 
sensors. Metric data will be converted into suitable 
format and stored for offline analysis.  

• The predict module:  It uses the pre-trained ML model 
to make predictions with metric data from the input 
module. 

• The output module: It provides interfaces for external 
users (e.g., Prometheus, ODO). 

• The control module: It can set power limit 
automatically by BMC function or other knobs (e.g., 
RDT, SST). 

The Agent is deployed on the nodes in the cluster and 
integrated with the orchestration platform. In this deployment 
scenario, the far-edge sites are solar energy-based. Each site 
was supported by renewable energy only and installed with 
three PV panels for power generation and one battery for energy 
storage.  

To help each site's infrastructure last longer, the Lenovo 
Smart Power Agent collects telemetry from the sensors and uses 
this to predicts some key metrics. The prediction results include 
future available energy, remaining battery time and suggested 
power consumption. The output of the Agent can be used by the 
local planner to make decisions – e.g. if the suggested power 
capping can be set given the objectives that currently need to be 
fulfilled.  

VI. RESULTS 
In the following sections we will showcase the obtained 

results for  workloads management in a power constraint green 
edge. A key to managing the workload instances and their 
associated SLOs/objectives, is understanding how the workload 
behaves under  various platforms loads . Rightsizing the 
workloads to match the desired objectives and load allows for 



reduction of resource allocations. Trading off the resource 
allocations in contrast to current load and desired SLO allow 
for more efficient management of the power budget. For 
example, lowering the resource allocations, or objectives – and 
slightly penalizing the workloads’ performance – might allow 
for longer lasting batteries. Therefore, in the following 
subsection we show the results from analyzing the workloads 
and their performance, ways to automatically derive the profiles 
and their  usage  for orchestration decision. 

A. Definition of Services Golden Configuration Profile 
The minimum amount of resources defines a golden 

configuration for a particular service (e.g., memory, compute, 
acceleration etc.) needed for a specific service to achieve a 
certain SLO for a particular set of technology features. A group 
of technology features define a profile. This is not limited to 
specific SKUs or system configuration but considers a 
fundamental set of features that may dictate the performance 
and resource requirements for a service implementation. As an 
example, a particular service may have three golden 
configurations for three type of profiles: (1)  CPU based 
execution with AVX512 as a required feature; (2)  CPU based 
execution with  FPGA as a required feature; and (3)  CPU based 
execution without acceleration. 

We also consider that one service may have different 
combinations of  implementations (e.g., video analytics using 
different levels of precision) and  inputs (e.g.,  stream resolution 
1080 or 4K). Thus, a particular service may have multiple 
golden configurations mapped to multiple groups of features. 
This information allows the decision on where a specific service 
execution needs to land. 
 

 
Fig. 10. Golden Configuration Identification for 2 Types of Streams 

 
Fig 10. provides an example of a golden configuration 

identification. The figure shows how the frames per second per 
processed stream by a particular service (performing video 
analytics for retail) decrease as more streams are provided by 
the service. Two implementations are considered (INT8 and 
FP32). The SLO requires to perform 1.5 frames per second per 
stream. As observed this platform flavor (composed of Cascade 
lake platinum cores and NVME drives) can process up to 56 
and 84 streams for the FP32 and INT8 implementation, 
respectively. After this point, adding more streams implies that 
the SLO cannot be met. The critical aspect of this exploration 

is dynamically identifying the minimum amount of resources 
required to achieve the given SLO.  

 

 
Fig. 11. Resource requirements associated to a specific golden configuration 

 
Fig 11. provides an example of CPU utilization increase with 

the increase in the number of streams. The required CPU per 
stream will be decided function of the maximum amount of 
streams density that still satisfies the SLO. Hence, per the 
previous analysis, we select the point of 56 and 84 instances 
(per FP32 and INT8) and normalize the CPU utilization to those 
values: 28/56 cores/per stream for FP32 and 28/84 cores per 
stream for INT8. A similar process needs to be applied for the 
other resources (e.g., memory capacity, memory bandwidth 
etc.) 

B. Intelligent Discovery of Services Golden Configuration  
There are multiple ways to discover golden configurations. 

This can range from simple approaches that consist of a simple 
sweep of the application execution increasing the service 
demand to more sophisticated examples that may include ML 
techniques such as Random Forrest. 

 Fig. 12 shows the architecture of the Execution Sweeper. 
The inputs provided to the sweeper include:  

• SLO definition 
• Service usage model descriptor that includes 

elements such as docker image and knobs to be 
evaluated. A typical configuration may consist of 
two knobs: stream resolution (720,1048 & 4K) and 
neural network resolution (INT8, FP32) 

• An injector module (that needs to be provided by 
the ISV) to generate traffic to the service. This 
injector must be capable of adjusting the amount of 
traffic (workload units) to the service 

• List of platform flavors that need to be swept  
 
The sweeper will create a golden configuration for each base 

line golden configuration per each profile.  The execution 
sweeper, given all the previous inputs, will keep increasing 
workload units to the service until the SLO is not achieved 
anymore for a particular flavor, then establishes the golden 
configuration. 

The current architecture implementation uses the sweeper to 
identify the resource requirements for different potential 



deployment options when services are on-boarded to the end to 
end edge deployment. Afterwards, multi-tier orchestration uses 
this information to select the right edge appliance based on the 
available profiles and the required estimated service 
instantiation resources. Future versions of the intelligent 
discovery will include federated learning to characterize and 
tune the golden configurations when services get deployed in 
the infrastructure and their requirements are better understood. 

 

 
Fig. 12. Golden Configuration Sweeper Example 

C. Orchestration decisions 
Fig. 13 shows the KPI of a service instance in the system. In 

particular, the P50, P95 and P99 latencies quantiles are shown. 
 

 
Fig. 13. Latencies values as reported by the services 

 
Fig. 14 shows the effect of selecting a certain type of CPU 

over another on the latency of a deployed function. 
This information is key to be able to understand the 

behaviour of the workload in the current context. Information 
on how latencies are effected by certain resource configurations 
– and hence golden configurations (discussed in Sectiob VI.A) 
– can for example be used to charterize workloads. The 
workload characteristics in turn can be stored in the effects 
database – as described earlier – and used by the local planner 
to make decisions. 

 

 
Fig. 14. Time series data showing the effect of selecting a certain CPU 

profile on  P50, P95, P99 latencies – the planner uses this information to make 
the most efficient allocation (In this example a CPU with a lower TPU is 
selected, that can meet the requirements and is hence selected at around 

11:24:00) 
 
Similar to [40] and [41], we used a Bayesian Optimization 

(BO) algorithm – as part of archiecture described in the 
previous sectionB above- to determine the right amount of 
absolute CPU units and memory capacity to associate to a 
container instance. The CPU units are an absolute measure in 
Kubernetes, and hence an allocation is very specific to a certain 
platform, which a service owner might not know its details. 
Hence, the usage of a BO algorithm automatically determines 
the optimal resource allocation without the need to test all the 
possible options for resource allocation. The planner uses the 
information on the most efficient resource allocation and injects 
into the deployment description as CPU requests and limits (an 
example is shown in the following code listing for a video 
analytics stack component). 

 
resources: 
  requests: 
    memory: "372Mi" 
    cpu: "700m" 
  limits: 
    memory: "372Mi" 
    cpu: "700m" 

 
Rightsizing resource allocations for the workload is 

especially crucial for scheduling and admission control in a 
resource constrained edge. This avoids over- or under-
provisioning of resources by the tenants. The planner can also 
trigger the workload migration and ensure the most efficient 
resource allocation. For example in Fig. 14 a different CPU 
resource profile is picked, which leads to an increase in 
recorded latencies, but can still fulfill the workload’s 
objectives. The local planner also takes into account the 
exposed metrics  from Lenovo’s power Agent, considering the 
remaining battery time and the suggested power capping. If the 
remaining battery time falls below a threshold, the local planner  
adjusts the resource allocations (e.g.,  through reducing power 
or try to evict a workload instance from the pole). The suggested 
power capping is constrasted to the required power capping by 
individual workload instances  to meet their objectives. Lower 



power envelopes normally mean reduced performance, 
wherethe planner trades off the required power capping in 
context of the desired objectives of the workload instances. 

VII. CONCLUSION 
With 5G and the emergence of new IoT services and the need 

for AI processing capabilities near the data sources, edge 
computing is moving from standards and concepts to true 
deployment. Edge computing is promising not only for 
reducing services latency, but also for helping green networking 
and communication by reducing network resources that would 
be needed if the services are always hosted in the Cloud. In this 
paper, we focus on a key aspect in edge computing, which is 
resources efficiency through autonomous lifecycle 
management for green edge computing platforms. We present 
the first of its kind architecture and solution that defines a 
golden configuration for each workload type to guarantee 
efficient use of resources while achieving the services SLOs. 
We present an example of a true deployment scenario and 
demonstrated some obtained data. In a later state we will 
incorporate further workload characterization techniques and 
investigate additional deployment scenarios with additional 
services.  
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