

Abstract— Edge computing is an important pillar for green

computation by bringing the Cloud resources to the Edge, serving
real-time applications, and reducing the computing and network
resources required to transfer data for processing in the Cloud. 5G
brings network densification and enables massive IoT and V2X
applications, which triggers the need for edge computing to host
network functions and user-facing services in a converged edge
platform(s). Several edge computing deployments are being
observed by ecosystem players (telco, ISVs, chip vendors, CSPs, …
etc.) for IoT or V2X services, however, focusing on converged
network functions and services. The point that is still in its early
stages is the dynamic workload orchestration across the converged
edge platforms running network functions and multi-tenant IoT
services with different compute requirements and different
Service Level Objectives (SLOs). This paper focuses on
autonomous life cycle management for converged edge platform(s)
to enable resource-efficient workload orchestration, contributing
to the green goal. We present a solution for intelligent dynamic
resources configuration on edge computing platforms hosting
multi-tenant services while guaranteeing the SLO for each service
and helping green communication goal. The presented solution has
been deployed in a trial, and we present results on efficient
resources configuration.

I. INTRODUCTION
HE cloud in the past two decades allowed applications and
data to be accessed from anywhere, following a centralized

approach for ubiquitous services access and for efficient use of
resources. However, the increase in networking and
connectivity capabilities that we observe with 5G [1] and the
continuous growth of IoT and V2X services, led to the
generation of a considerable amount of upstream data to the
Cloud applications as well as downstream data to end-users.
Consequently, the paradigm of centralizing applications
infrastructure at the Cloud for resources efficiency does not
hold anymore as a considerable amount of network and
communication resources become a prerequisite to provide a
data pipe to the Cloud, which consumes compute resources.
Besides, the nature of the new applications requires more and
more real-time processing. All this led to the proliferation of
edge computing, shifting from centralized to distributed and
saving network and communication resources.

5G and edge computing offers a converged compute plus
communication infrastructure for cloud-native applications for
new services and software-defined network functions. This
creates value across chip manufacturers and platform vendors,
telco, CSPs, hyperscalers, SW vendors (ISVs), and System
Integrators (SIs) who contribute to the creation of the edge
computing HW and SW infrastructure [2].

Edge computing allows for ultra-low latency response times
and enhanced bandwidth availability compared to conventional
centralized computation models. Additionally, edge computing
helps compliance to data use policies – for example data is
constrained to remain within a certain location or when data
must be processed locally because the cost of transport or
transport time is prohibitive. Services that use the edge include
but are not limited to traditional network functions, connected
self-driving cars, video surveillance, IoT analytics, video
encoding, video analytics, speech analytics or retail services,
among others. The following are the most representative use
cases and services [3, 4] for the converged edge computing
platforms:

• Network Functions Virtualization (NFV) [5], such as
vRAN and ORAN, where the required resources are
mainly CPU, FPGAs, and smart NICs.

• Content Delivery Networks (CDN), where the
required resources at the Edge are mainly storage,
CPUs, GPUs, smart NIC, and network bandwidth.

• Smart Manufacturing [6, 7], such as automated defect
detection, automated guided vehicles (AGV), factory
remote control, where the required resources at the
Edge are mainly CPUs, communication, FPGAs,
accelerators.

• Video Analytics, such as monitoring and surveillance
applications, where the required resources are CPUs,
storage, and accelerators (e.g., GPUs and VPUs).

• AR/VR and Gaming that require images processing,
transcoding, stitching, and annotations with overlaid
images, where the resources required are CPUs,
communications, and accelerators (e.g., GPUs and
VPUs).

• Connected and Autonomous Vehicles [8, 9], such as
V2X and V2V applications for safety, traffic
information, interactive maps, and passengers’
entertainment, where the required resources are CPUs,

Autonomous Lifecyle Management for Resource-efficient
Workload Orchestration for Green Edge Computing

Francesc Guim, Thijs Metsch, Hassnaa Moustafa, Timothy Verrall, Intel Corporation

David Carrera, Nicola Cadendelli, NearbyComputing
Jiang Chen, David Doria, Chadie Ghadie, Lenovo

Raul Gonzalez Prats, Cellnex Telecom

T

communications, and accelerators (e.g., GPUs and
VPUs).

• Retail, such as shelves monitoring, self-checkout, cash
desk monitoring, where the required resources are
CPUs, communication, and accelerators (e.g., GPUs
and VPUs).

• Health and Medical Applications [10, 11], such as
digital imaging, tele-health, and remote surgery, where
the required resources are CPUs, real-time and time-
sensitive communication, accelerators (e.g., GPUs and
VPUs).

• Smart Cities and Government Applications, such as
connected transportation, smart traffic lights, traffic
management, smart intersections, where the required
resources are CPUs, communication, and accelerators
(e.g., GPUs and VPUs).

• Audio AI [12], such as speech recognition and natural
language processing for automation, interactive
experience, and chatbots, where the resources required
are CPUs, FPGAs, and AI accelerators.

These different services have different requirements in terms

of edge location (and hence form factors), performance (and
therefore compute resources), QoS, SLOs, data storage and
sharing policy, and security. This creates a hard need for
intelligent life cycle management of the edge applications,
where end-to-end orchestration is crucial to meet the
applications requirements and SLOs while continuously
adjusting the platform and system parameters to ensure efficient
usage of computing resources. Intel platforms provide a unique
and wide range of control knobs that enable orchestrators with
the ability to dynamically adjust the QoS of the applications
while providing excellent performance predictability in shared
and constrained environments.

This paper focuses on autonomous lifecycle management for
green edge computing platforms through dynamic and
intelligent orchestration allowing efficient use of resources
while guaranteeing Service Level Objectives (SLOs) across a
set of diverse services. The rest of this paper is organized as
follows: Section II discusses the related work on resources
orchestration in edge computing and frames the context of the
proposed work, Section III shares the services orchestration
known models, and Section IV presents the solution we bring
for autonomous life cycle management across the converged
edge platforms. Based on a real deployment as described in
Section V, we showcase results in Section VI, and we conclude
the paper in Section VII.

II. BACKGROUND AND RELATED WORK
To pave the way for MEC deployment with 5G

infrastructure, several efforts focused on services orchestration.
The European Telecommunications Standards Institute (ETSI)
has standardized the reference architecture for NFV
management and orchestration [13]. MEC services and NFV
functions are considered in [14] through a common framework
to help network functions and services convergence, and [15]

adopts the ETSI NFV MANO framework and expands it to Fog
Computing to enhance the orchestration decision making.

The centralized and distributed management schemes in Fog
Computing are studied in [16], focusing on network usage and
latency, which showed that distributed management performs
better, especially when the number of sensors connected to the
Fog node is low. Distributed resource allocation and
orchestration is presented in [17, 18], seeking the optimal
partitioning of shared resources between different applications
running over a common edge infrastructure, through a service-
defined approach to orchestrate cloud/edge services, allowing
each application to define its own orchestration strategy with
declarative statements.

The 3rd party MEC renting infrastructure is considered in
[19], and a MEC broker is introduced to handle the access
policies/privileges across the tenants and allocate resources in
compliance with each tenant SLA. A fuzzy-logic based
approach is introduced in [20] for workload orchestration
across the edge computing infrastructure for processing tasks
from mobile devices. Edge/Cloud interoperability is also
considered in [21] by proposing a toolkit to interact with
multiple Cloud and Edge platforms in real-time and provide
rule-based engine to specify underutilization and
overutilization, which helps switching-on/switching off
resources. In addition, orchestration within CDN is considered
in [22] introducing virtual CDN (vCDN) with SW defined
features to split caching and streaming across the shared
resources, which allows the maximization of the QoS and the
optimization of the limited edge resources.

For IoT deployment scenarios, services orchestration for IoT
mobile networks is introduced in [23] through dynamic
hierarchal orchestration algorithms and blockchain and
reinforcement learning to allow trusted resource sharing and
automatic adjustment. Several efforts consider resource
orchestration for IoT edge gateways considering event driven,
publish-subscribe mechanisms. [24] presents a light-weight
service lifecycle management for containers workload in
industrial IoT, helping service deployment, updating, and
terminating across IoT gateways in smart factories. In [25] an
edge computing solution is presented for resource management
between IoT gateways, considering the context from data
streams and the resources on IoT gateways and connection
topology.

Moreover, several orchestration frameworks exist within the
open source community for cloud-native applications
orchestration in the Cloud and at the Edge, such as OpenStack
[26], Kubernetes [27], Mesos [28], and Akraino [29].
Expansion of the Kubernetes scheduler is presented in [30] for
dynamic orchestration based on real-time resources status,
where the scheduler uses status data from the cluster nodes to
decide on workload orchestration based on a measure of the
actual current load and the requirements of new containerized
applications (a.k.a, PODs).

The existing efforts in research, standards, and open source
frameworks consider workload orchestration from the
following specific standpoints: (i) orchestration of NFV
workload, (ii) orchestration of workload across IoT gateways or

edge computing server through hierarchal load balancing across
multiple edge platforms/IoT gateways, (iii) orchestration of
workload through resources division across multiple types of
services (e.g., content streaming and content caching in CDN),
and (iv) orchestration of workload across the shared resources
in edge platform(s) through holistic knowledge on the resources
over utilization/underutilization. Existing solutions fall short to:
(i) provide workload orchestration through real-time and
dynamic knowledge on each edge platform utilization in a very
fine-grained manner across all HW elements in the platform,
and (ii) associate this real-time, dynamic, and fine-grained
platform HW utilization knowledge with the Service Level
Objective (SLO) of each workload to setup in real-time the right
HW configuration for each workload. The solution we provide
in this paper alleviates this limitation and satisfies (i) and (ii).

III. SERVICES ORCHESTRATION MODELS
The diverse services enabled by edge computing platforms

vary in their requirements in terms of:
(i) Power, cooling and form-factor constraints, which in turn

dictate how many resources can be placed in a particular
location and how ambient conditions may influence how those
resources behave or even their availability (e.g., solar power-
based deployment),

(ii) Performance and QoS, where data for an autonomous car
may have higher priority than a temperature sensor in terms of
the response time requirement. Depending on each application,
the possible performance bottlenecks can be a combination, of
computing resources, memory, storage, and network,

 (iii) Reliability and Resiliency, where some input streams
need to be acted upon and the traffic routed with mission-
critical reliability, whereas some other input streams may be ok
to tolerate an occasional failure. Again, this is going to depend
on the application, and

(iv) Security, where data protection policies, service isolation
and attestation vary per service and location.

To meet the above requirements adaptively for each service,
we expand the Orchestration definition to be the management
of the services workload placement and processing through
dynamic and intelligent resources configuration to meet the
services level agreement. We consider single-site orchestration
as well as multi-site orchestration.

A. Single-Site Orchestration
In this case, services, resources & infrastructure are deployed

within a single Point of Presence (PoP) or a close geo-
proximity. As most deployments will be hierarchically
managed, the orchestration & management stack needs to
adhere to the higher-level components' requirements and
policies in the stack.

Fig. 1. Single-Site orchestration Example – showcasing multi-node

deployment; Note that the control plane and its components can also run on a
single node.

Fig 1. illustrates the flows and components of an

orchestration and management stack in Single-Site deployment.
It follows a classical Controller-Worker architecture and can be
mapped to various orchestration solutions, such as, but not
limited to, OpenStack [26], Kubernetes [27], and Mesos [28].
Furthermore, it is key that workloads define their Service Level
Objectives (SLOs) and enable their continuous observability.
This can be achieved through the right extensions to the
manifest that are being used to deploy/provision the services.
The provided SLOs can hence be monitored by the
orchestration stack in place. The example in the Fig 1. shows a
deployment with multiple compute nodes, it is possible to have
single node configuration.

The footprint of the orchestration stack itself can vary while
offering the same kind of interface. For example, Kubernetes
K3s can be used on smaller devices, while providing similar
functionalities. Controllers and schedulers are key components
to translate SLOs into specific policies, while a set of agents
and drivers enable the same.

To enable service performance and enable service assurance
some key technologies are required: (i) Enablement of
acceleration technologies and platform features within the
orchestration in management stack, and (ii) Support for high
precision orchestration and scheduling through (longer)
running observations in a background flow, and a runtime
driven foreground flow that deals with fine grained service
request and re-balancing decisions.

B. Multi-Site Orchestration
Fig 2. Illustrates an example of multi-site orchestration. In

this case, services, resources & infrastructure are deployed
across multiple PoPs, where PoPs could eventually be mobile.
A hierarchical, top-down management approach is required,
where the following key requirements play a role when dealing
with Multi-Site deployments: (i) Support for hierarchical
management, (ii) Support for integration of various resource
orchestration technologies/revisions, and (iii) Support for E2E
orchestration for optimal placement/scheduling of service
components considering resource constraints, data locality and
SLO requirements.

Fig. 2. Multi-Site orchestration & management flows – Akraino [29] reference

solution example

From an E2E perspective and service assurance and enabling

high QoS levels, it is key that the right policies and setting are
translated from the top-down and broken down into individual
policies and settings for the individual components. Overall
monitoring and Service Level Agreement (SLA) management,
Rating, Charging & Billing (RCB), and the possible
remediation on SLA violation need to be handled in a top-down
manner. This requires that the individual single-sites report the
right (and enough information) to the higher layers.

IV. AUTONOMOUS LIFECYLE MANAGEMENT
There is key motivation for autonomous lifecycle

management for edge computing services. Today, independent
software vendors (ISVs) and users are facing the challenge of
developing and managing services at the edge. Edge
infrastructure owners and current edge orchestration stacks
assume that end-users will provide the resource requirements
needed when a service needs to be launched at the Edge. Hence,
a typical interface to launch an edge service would encompass:
(i) The service itself that can be in different types of forms:
binary, docker (descriptor, image or tag) or virtual machine, (ii)
Potential list of data providers or users to be connected to the
service, which can be a list of streams from specific cameras,
IoT sensors using Messaging Queueing Telemetry Transport
(MQTT) to provide data for instance from a factory, end-users
streaming content from the service etc., (iii) Potential network
latency and bandwidth requirements, and (iv) List of resources
and resource requirements needed for the service, which
typically includes a list of CPUs, accelerators, memory capacity
and storage capacity, and other resources that can be potentially
needed.

On the one hand, it is not straightforward for the ISVs or
users to provide most of these requirements as they are
associated with the use cases and are service domain specific.
On the other hand, providing details on resources
types/requirements is extremely complex for several reasons:
(i) the current number of combinations of different type of
processors (and the corresponding SKUS and different
configurations) and other family of technologies (fabric,
storage, accelerator etc.) can easily exceed thousands of
potential edge appliances. This makes it impossible to
understand how many resources are needed for a particular
service to achieve the SLO in all the different possible
combinations. (ii) Edge is a dynamic live system, which implies
that applications may migrate from one location to another with

other platform and resources. Hence, it’s not feasible to expect
the end user to know where the application will land or move
as services may land or migrate to all the various edge
platforms. This implies that loads on different edge platforms
may vary and may require increasing resource assignment to
critical workloads to keep with the SLO.

Another big challenge for the solution providers is that each
edge infrastructure owner provides different ways to on-board
applications. This implies that ISVs and other ecosystem
players need to make a substantial amount of integration and
interoperability effort every time they aim to show a new
provider. This obviously does not scale and does not allow
efficient maintenance and improvement for the applications.

The goal of the autonomous lifecycle management is to
abstract as much as possible to the ISVs and other solution
providers the complexity of the end to end edge architecture and
mitigate the discussed challenges, through mainly: (i)
Infrastructure abstraction, where services are not required to
understand the available edge platforms and technologies up to
a certain degree, but can be as optimized to utilize certain
technologies when they are available (e.g., acceleration with
AVX512, or a specific type of accelerators). (ii) Services
description, where services provide to the infrastructure the
required SLO to implement the use cases. Examples can be for
instance that a video analytics workload can process N number
of frames per second.

The autonomous lifecycle management that we present in
this section provides real-time telemetry during the services
lifetime, which the edge infrastructure can use to validate the
SLO. The first level of orchestration occurs through automatic
discovery of the resource requirement and the SLOs
requirement for the on-boarded services. Then, the edge
computing infrastructure with the edge stacks considers the
real-time telemetry from the services to identify any SLO
violation and decide whether to provide additional resource
allocation to a particular service or migrate it.

A. Solution Architecture
The architecture’s objective is to standardize services on-

boarding at the edge and the interfaces between the services and
the Edge platforms to perform the applications lifecycle
management.

B. Detailed Building Blocks in the Solution
Fig. 3 illustrates the building blocks to address autonomous

lifecycle management. The left part of the figure shows the
discovery of the service’s golden configuration profile. Its main
objective is to discover, per each potential platform flavor (e.g.,
Xeon SP or Xeon SP + accelerator) the minimum needed
resources for a particular service to satisfy the required SLO.
The following subsection provides an example of how to
implement such building blocks. These building blocks are part
of the edge computing infrastructure that is abstracted to the
end-users and ISVs.

Fig. 3. Building Blocks – Case of Local Edge

The right part of Fig. 3 shows the actual orchestration

building blocks and basic flows. The orchestration schemes use
the golden configurations to decide resource selection and edge
platforms selection depending on the desired amount of
workload units (e.g., the need to process ten cameras
performing anomaly detection). The lifecycle management of
the service performed by the orchestration architecture is based
on the application real-time KPIs provided by service.

Fig. 4. Building Blocks – Case of Multi-Edge

Fig. 3 shows the architecture for a local deployment. For

instance, it could be in a single edge appliance associated with
an on-premise or private-5G type of deployment model (e.g.,
surveillance with a single edge platform performing the stream
processing). However, in most edge deployments, the
expectation is to have multi-tier edge appliances, where
services can move from one location to other locations
depending on the application performance or changes in the
infrastructure (e.g., reduced network load). In this case, as
shown in Fig. 4, there will be an interplay between a local edge
orchestrator and a multi-tier edge orchestrator. For instance, if

local orchestrator cannot make the service meet the required
SLO it can work with the multi-tier orchestrator to migrate the
service into another location.

C. Autonomous Lifecycle Management – Full View
As shown in Fig. 5, service life-cycle flow would take place as
follows: (i) The orchestration entity running on that appliance
is required to instantiate a specific service with a particular
amount (which could be provided for instance with a set of data
streams to connect). (ii) Based on the golden configuration and
the available resources, the orchestrator will select the right
service configuration and platform resources to satisfy the SLO
associated with the service and based on the required quantity.
For instance, if 10 streams at 1080 are provided to the service,
and the service has associated 0.5 cores and 200 MB/s of
memory bandwidth per stream to keep the SLO, the
orchestrator may select 5 cores and allocates 2 GBS to those
cores as starting point. (iii) Once the resources are selected, the
orchestration logic will instantiate the service (configuring the
data streams properly). (iv) Once the service is instantiated and
starts reporting the real time application KPIs, the orchestration
logic is responsible to monitor that the SLO is not broken. (v)
If the SLO is broken, the orchestration logic may decide to
allocate more resource or notify that the SLO cannot be
achieved with the current load. There are multiple ways to
identify what resources cause a bottleneck and need to be
allocated (e.g., using Top-down Micro-architecture Analysis
Method “TMAM“ metrics or finger printing techniques). Our
reference implementation provides a ML- based technique.

In many cases, the architecture will be composed of multiple
edge appliances managed by an end-to-end orchestration,
managing the end to end architecture at a higher level. Fig 4.
shows an expansion of the previous scenario. In this case, the
golden configurations may be hosted and managed by the
higher orchestration entity and provide the resources required
by the services and the SLO to the lower orchestration entity.

V. IMPLEMENTED ARCHITECTURE
This section provides a description of a deployment scenario

that has been implemented based on the autonomous lifecycle
management solution and architecture described in Section IV.

A. Cellnex Green Edge Architecture
The Cellnex Mobility Lab in Castellolí, near Barcelona

(Spain), focuses on developing vehicular use cases. The lab
results from the digital transformation of Circuit Parcmotor
Castellolí, which has been converted into an innovative
technology center that supports experimental living-labs for
smart mobility and connected/autonomous vehicles.

The Mobility Lab develops 5G-based sustainable, connected,
and autonomous mobility solutions for vehicles, traffic
management, and road infrastructure. This represents an
innovative area to test and develop new technological solutions
and services advancing connectivity, especially in rural

GOLDEN CONFIG
DISCOVERY

SERVICE + SERVICE LEVEL
OBJECTIVE

PROFILE GOLDEN CONFIGURATION
PER PROPORTIES GROUP - SLO

SERVICE SLO AGAINTS AVAILABLE
EDEGE APPLIANCES

Standard Submission APIsService On-boarding APIS

SERVICE ID, SERIVCE MANIFEST +
SERVICE LEVEL OBJECTIVE

SERVICE ID & AMOUNT OF
WORKLOAD UNITS REQUIRED

LIFE CYCLE MANAGEMENT OF
SERVICE

LOCAL ORCHESTRATOR AND RESOURCE MANAGER

SERVICE RESOURCE
STATIC ALLOCATION

APPLICATION GUIDED
OBJECT DRIVENT
ORCHESTRATION

SERVICE DYNAMIC SLO
AND REAL TIME KPI

PLATFORM & SYSTEM
TELEMETRY

PLATFORM RESOURCE
ALLOCATION (RDT ..)

EDGE APPLIANCE

LIFE CYCLE MANAGEMENT OF SERVICE

LOCAL ORCHESTRATOR AND RESOURCE MANAGER

SERVICE RESOURCE
STATIC ALLOCATION

(SERVICES WITH HARD
RESOURCE SLA TO

ACHIVE SL)

APPLICATION GUIDED
OBJECT DRIVENT
ORCHESTRATION

SERVICE DYNAMIC SLO
AND REAL TIME KPI

PLATFORM & SYSTEM
TELEMETRY

PLATFORM RESOURCE
ALLOCATION

MULTI-TIER ORCHESTRATION

ORCHESTRATION
POLICIES

E2E SLO
MONITORING

GLOBAL
PLANNER

Standard Submission APIs

SERVICE ID & AMOUNT OF
WORKLOAD UNITS REQUIRED

SERVICE PROFILE GOLDEN
CONFIGURATIONS

SERVICE LEVEL
OBJECTIVES UPDATES

Service Submission
(SERVICE,

SERVICE LEVEL OBJECTIV,
PROFILE …)

DEVICE TO CLOUD ARCHITECTURE

environments.
The racetrack has been equipped with several self-sustaining

sites to support the Vehicle-to-Everything (V2X) wireless
network that provides coverage to the whole circuit, allowing
connectivity between vehicles, vehicles to infrastructure
connectivity (high-definition cameras for monitoring vehicles
on the track, environment sensors, IoT,…) for monitoring
vehicles on the track and on-board units for transmitting
telemetry, voice and video data.

The self-sustaining Green Edge sites are powered by
renewable energy: in this case, the communication towers are
equipped with wind turbines and solar panels and extended
batteries to store the electricity generated on-site (no grid
connection). The towers are interconnected using radio links,
and therefore, there is no need for power cables nor fiber links
between them.

One of the big challenges for this type of deployments is
managing power consumption while keeping the right service
level objective for the edge services running on the appliance
and the service level objective that infrastructure stacks (such
as vRAN) need. The architectural approach that we present
addresses the previous challenge by reducing the gap between
service and infrastructure flows.

Fig. 5. Overview of the deployment scenario

B. Deployed Scenario Description
Fig. 5 illustrates the deployment scenario, which

comprehends three main parts: (i) Global end to end multi-
orchestrator that performs the edge appliance allocation when a
service needs to be instantiated. Once the service is instantiated,
it may receive a request from the lower orchestration entity
running on the selected appliance if the SLO associated to the
service cannot be met. (ii) Lower level orchestration stack
comprising of Kubernetes using Docker and Prometheus
application expansions that allow for reporting run-time

telemetry corresponding to the SLOs defined at the submission
time. (iii) The lower-level objective driven orchestration
extension to the Kubernetes control plane tracks the service
KPIs as reported, against SLO and potentially applies resource
enforcement. (iv) The smart power management agent is
responsible for predicting and managing the power at the
system level to make solar-based edge appliances last.

C. Multi-tier orchestration
The global end to end multi-tier orchestrator is Nearby One

[31]. A solution composed of two main elements:

• The Nearby Orchestration Platform: the main
component of the solution, which runs in a central
location and performs all the tasks related to the
orchestration of applications and edge infrastructure.

• The Nearby Blocks: are distributed components that
encapsulate logic and code for different application-
specific functionalities.

The solution natively integrates with third party Virtual
Infrastructure Managers (VIM), like OpenStack or VMware,
and extensively supports the integration of Docker containers
into both VIMs (containers in VMs) and bare metal servers. In
this case, the applications are shipped as Docker containers and
are deployed on emulated edge servers (VMs) that are treated
as bare metal servers. Nearby One is also capable of
provisioning and monitoring the infrastructure if needed, what
is particularly relevant for low-end deployments in the ultra-far
Edge, where no resources are available to run large VIMs.

Edge Applications, as deployed by the Nearby One solution,
are encapsulated into Nearby Blocks to extend the ETSI MEC
standard's capabilities. Application ecosystems require inter-
application communication and accurate placement decisions,
and they usually require advanced tuning of their execution
platform. Each Nearby Block contains the application logic
(containers or VMs provided by a third-party vendor), and they
are encapsulated with a set of auxiliary components that provide
the means for the application to be effectively managed,
including:

• Application performance KPIs for continuous SLA
assessment (not only network-centric metrics).

• Application health/status KPIs for continuous
lifecycle monitoring and management.

• Application capabilities dynamically exposed at
deployment time (e.g., services exposed by the
application for external consumption, like an output
video feed, or a third-party management dashboard).

• Correlation of application KPIs and platform
(processor, accelerators, memory, storage) for more
effective MEC platform management.

D. Local object driven orchestration
We’ve made the following extensions to the Kubernetes

control plane to be able to manage the objectives of a
service/workload. These extensions include the following
additional components (marked in red in Fig. 9) to the
Kubernetes control plane:

EDGE APPLIANCE

Platform

K8S/K3S

DOCKER

MULTI-TIER ORCHESTRATOR

ORCHESTRATION

POLICIES
E2E SLO

MONITORING
GLOBAL PLANNER

APPLICATION

PROMETHEUS EXPORTER

INSTRUMENTATION

SYSTEM

TELEMETRY

(PLATFORM &
SERVICES)

151

scheduler

kube-
apiserver

Local
planner scheduler

kubelet(s)

kube-proxy

Sense & Act
Agent

etcdeffects Tel.

Dash-
board

INTEL – OBJECTIVE DRIVEN ORCHESTRATION

Service Submission

SERVICE LEVEL

OBJECTIVES
UPDATES

App KPIS

Platform

Telemetry

LENOVO POWER PREDICTION AND

MANAGEMENT

Predictive
Algorithm

IN OUTAgent

TELEMETRY

POWER MGMT. LOGIC

CABINET TELEMETRY

TELEMETRY RPI (MQTT)

DEVICESBATTERY

• A (set of) telemetry/monitoring databases/sinks,
where the platform's information and/or the service are
stored. We use InfluxDB [32] instances from the
service mesh Linkerd [33] and a standalone instance
for storing information for our reference
implementation.

• A database that stores the effects of orchestration
actions / resource allocations have on the workload’s
objectives. In the initial reference implementation, we
use MongoDB [34].

• A planner component, which can reason over the
effect orchestration activities / resource allocation
have on the objectives in place. It manipulates/changes
the configurations of the workloads in place.

• A set of agents running on the nodes in the cluster,
which can instrument the infrastructure and change
resource allocation settings accordingly. In this
reference implementation OPNFV Barometer’s [35]
collectd is used for telemetry, while a set of scripts is
being used to manipulated resctrl [36] filesystem’s
schemata that are otherwise can be under control by
CRI-RM [37].

Fig. 9 shows the high-level flows as also defined in [38]. In
a foreground flow the user requests the deployment of a
workload in combination with the associated objectives. The
objectives are defined in terms of latency, availability, and
throughput, which can be accompanied by violations budgets
defining how often / how long an objective can be “violated”.
This is achieved by leveraging Kubernetes Custom Resource
Definitions [39]. In a continuous running background flow, the
planner observes the current state of the workload instance’s
(For example Kubernetes PODs as part of a
ReplicaSet/Deployment) objectives and matches it against the
desired state. This follows the default Kubernetes operator
design pattern. The state is defined by the objectives associated
with the workload instances, and the planning algorithms
determine if any mitigation actions needed to be done (For
example to minimize resource usage or optimize the
configuration to better match desired state). The plan that is
being derived can incorporate preferences from the resource
owner in the form of tunable cost/utility functions. Possible
actions include – but are not limited to – scaling out, removing
“unreliable” PODs, tuning the associated Memory bandwidth,
switching profiles, or changing of resource assignments. The
resulting plan is executed upon by the K8s control plane – and
if required the scheduler will place PODs according to the
updated configurations. While the planner is in charge of
translating the SLOs into actionable plans and defining
what/how to set up the systems, it is the scheduler's
responsibility to determine when/where to place the workloads
according to the provided information in the deployment
configuration.

Fig. 9. Foreground and Background Flow

Furthermore, in the background flow the effect’s database is

continuously being updated. Models that are either hand-tuned
or machine-learned describe the effect actions have on the
objectives of the workload. These models are being re-trained
as new data from the telemetry systems becomes available. This
enables tracking for workload changes, infrastructure changes
and their behaviors over time. This also assures that various
workload’s characteristics will lead to a different set of useful
actions. For example, a cache sensitive workload will react to
cache tuning, while a micro service might benefit more from
scaling out actions.

E. Power management
The power management solution is Lenovo Smart Power

Agent. The Agent is composed of four main elements:

• The input module: It is responsible for collecting
telemetry from the platform and the services of
sensors. Metric data will be converted into suitable
format and stored for offline analysis.

• The predict module: It uses the pre-trained ML model
to make predictions with metric data from the input
module.

• The output module: It provides interfaces for external
users (e.g., Prometheus, ODO).

• The control module: It can set power limit
automatically by BMC function or other knobs (e.g.,
RDT, SST).

The Agent is deployed on the nodes in the cluster and
integrated with the orchestration platform. In this deployment
scenario, the far-edge sites are solar energy-based. Each site
was supported by renewable energy only and installed with
three PV panels for power generation and one battery for energy
storage.

To help each site's infrastructure last longer, the Lenovo
Smart Power Agent collects telemetry from the sensors and uses
this to predicts some key metrics. The prediction results include
future available energy, remaining battery time and suggested
power consumption. The output of the Agent can be used by the
local planner to make decisions – e.g. if the suggested power
capping can be set given the objectives that currently need to be
fulfilled.

VI. RESULTS
In the following sections we will showcase the obtained

results for workloads management in a power constraint green
edge. A key to managing the workload instances and their
associated SLOs/objectives, is understanding how the workload
behaves under various platforms loads . Rightsizing the
workloads to match the desired objectives and load allows for

reduction of resource allocations. Trading off the resource
allocations in contrast to current load and desired SLO allow
for more efficient management of the power budget. For
example, lowering the resource allocations, or objectives – and
slightly penalizing the workloads’ performance – might allow
for longer lasting batteries. Therefore, in the following
subsection we show the results from analyzing the workloads
and their performance, ways to automatically derive the profiles
and their usage for orchestration decision.

A. Definition of Services Golden Configuration Profile
The minimum amount of resources defines a golden

configuration for a particular service (e.g., memory, compute,
acceleration etc.) needed for a specific service to achieve a
certain SLO for a particular set of technology features. A group
of technology features define a profile. This is not limited to
specific SKUs or system configuration but considers a
fundamental set of features that may dictate the performance
and resource requirements for a service implementation. As an
example, a particular service may have three golden
configurations for three type of profiles: (1) CPU based
execution with AVX512 as a required feature; (2) CPU based
execution with FPGA as a required feature; and (3) CPU based
execution without acceleration.

We also consider that one service may have different
combinations of implementations (e.g., video analytics using
different levels of precision) and inputs (e.g., stream resolution
1080 or 4K). Thus, a particular service may have multiple
golden configurations mapped to multiple groups of features.
This information allows the decision on where a specific service
execution needs to land.

Fig. 10. Golden Configuration Identification for 2 Types of Streams

Fig 10. provides an example of a golden configuration

identification. The figure shows how the frames per second per
processed stream by a particular service (performing video
analytics for retail) decrease as more streams are provided by
the service. Two implementations are considered (INT8 and
FP32). The SLO requires to perform 1.5 frames per second per
stream. As observed this platform flavor (composed of Cascade
lake platinum cores and NVME drives) can process up to 56
and 84 streams for the FP32 and INT8 implementation,
respectively. After this point, adding more streams implies that
the SLO cannot be met. The critical aspect of this exploration

is dynamically identifying the minimum amount of resources
required to achieve the given SLO.

Fig. 11. Resource requirements associated to a specific golden configuration

Fig 11. provides an example of CPU utilization increase with

the increase in the number of streams. The required CPU per
stream will be decided function of the maximum amount of
streams density that still satisfies the SLO. Hence, per the
previous analysis, we select the point of 56 and 84 instances
(per FP32 and INT8) and normalize the CPU utilization to those
values: 28/56 cores/per stream for FP32 and 28/84 cores per
stream for INT8. A similar process needs to be applied for the
other resources (e.g., memory capacity, memory bandwidth
etc.)

B. Intelligent Discovery of Services Golden Configuration
There are multiple ways to discover golden configurations.

This can range from simple approaches that consist of a simple
sweep of the application execution increasing the service
demand to more sophisticated examples that may include ML
techniques such as Random Forrest.

 Fig. 12 shows the architecture of the Execution Sweeper.
The inputs provided to the sweeper include:

• SLO definition
• Service usage model descriptor that includes

elements such as docker image and knobs to be
evaluated. A typical configuration may consist of
two knobs: stream resolution (720,1048 & 4K) and
neural network resolution (INT8, FP32)

• An injector module (that needs to be provided by
the ISV) to generate traffic to the service. This
injector must be capable of adjusting the amount of
traffic (workload units) to the service

• List of platform flavors that need to be swept

The sweeper will create a golden configuration for each base

line golden configuration per each profile. The execution
sweeper, given all the previous inputs, will keep increasing
workload units to the service until the SLO is not achieved
anymore for a particular flavor, then establishes the golden
configuration.

The current architecture implementation uses the sweeper to
identify the resource requirements for different potential

deployment options when services are on-boarded to the end to
end edge deployment. Afterwards, multi-tier orchestration uses
this information to select the right edge appliance based on the
available profiles and the required estimated service
instantiation resources. Future versions of the intelligent
discovery will include federated learning to characterize and
tune the golden configurations when services get deployed in
the infrastructure and their requirements are better understood.

Fig. 12. Golden Configuration Sweeper Example

C. Orchestration decisions
Fig. 13 shows the KPI of a service instance in the system. In

particular, the P50, P95 and P99 latencies quantiles are shown.

Fig. 13. Latencies values as reported by the services

Fig. 14 shows the effect of selecting a certain type of CPU

over another on the latency of a deployed function.
This information is key to be able to understand the

behaviour of the workload in the current context. Information
on how latencies are effected by certain resource configurations
– and hence golden configurations (discussed in Sectiob VI.A)
– can for example be used to charterize workloads. The
workload characteristics in turn can be stored in the effects
database – as described earlier – and used by the local planner
to make decisions.

Fig. 14. Time series data showing the effect of selecting a certain CPU

profile on P50, P95, P99 latencies – the planner uses this information to make
the most efficient allocation (In this example a CPU with a lower TPU is
selected, that can meet the requirements and is hence selected at around

11:24:00)

Similar to [40] and [41], we used a Bayesian Optimization

(BO) algorithm – as part of archiecture described in the
previous sectionB above- to determine the right amount of
absolute CPU units and memory capacity to associate to a
container instance. The CPU units are an absolute measure in
Kubernetes, and hence an allocation is very specific to a certain
platform, which a service owner might not know its details.
Hence, the usage of a BO algorithm automatically determines
the optimal resource allocation without the need to test all the
possible options for resource allocation. The planner uses the
information on the most efficient resource allocation and injects
into the deployment description as CPU requests and limits (an
example is shown in the following code listing for a video
analytics stack component).

resources:
 requests:
 memory: "372Mi"
 cpu: "700m"
 limits:
 memory: "372Mi"
 cpu: "700m"

Rightsizing resource allocations for the workload is

especially crucial for scheduling and admission control in a
resource constrained edge. This avoids over- or under-
provisioning of resources by the tenants. The planner can also
trigger the workload migration and ensure the most efficient
resource allocation. For example in Fig. 14 a different CPU
resource profile is picked, which leads to an increase in
recorded latencies, but can still fulfill the workload’s
objectives. The local planner also takes into account the
exposed metrics from Lenovo’s power Agent, considering the
remaining battery time and the suggested power capping. If the
remaining battery time falls below a threshold, the local planner
adjusts the resource allocations (e.g., through reducing power
or try to evict a workload instance from the pole). The suggested
power capping is constrasted to the required power capping by
individual workload instances to meet their objectives. Lower

power envelopes normally mean reduced performance,
wherethe planner trades off the required power capping in
context of the desired objectives of the workload instances.

VII. CONCLUSION
With 5G and the emergence of new IoT services and the need

for AI processing capabilities near the data sources, edge
computing is moving from standards and concepts to true
deployment. Edge computing is promising not only for
reducing services latency, but also for helping green networking
and communication by reducing network resources that would
be needed if the services are always hosted in the Cloud. In this
paper, we focus on a key aspect in edge computing, which is
resources efficiency through autonomous lifecycle
management for green edge computing platforms. We present
the first of its kind architecture and solution that defines a
golden configuration for each workload type to guarantee
efficient use of resources while achieving the services SLOs.
We present an example of a true deployment scenario and
demonstrated some obtained data. In a later state we will
incorporate further workload characterization techniques and
investigate additional deployment scenarios with additional
services.

REFERENCES
[1] “View on 5G Architecture,” 5G PPP White Paper, ver03, June 2019.
[2] D. Alusha, "Cloud-Edge Deployments in 5G Networks," ABI research
report, June 4, 2020.
[3] A. Joshi, A. Kaul, "Artificial Intelligence Hardware and Software
Infrastructure: Compute, Networking, Storage, and Cloud Infrastructure Driven
by AI Deployments", Tractica Research Report, 2019.
[4] M. Saadi, D. Mavrakis, "5G and AI: the foundation for the next societal
and business leap," ABI research report, April 2020.
[5] “Cloud Native Network Functions - Design, Architecture and Technology
Landscape,” Metaswitch White Paper, Nov. 2019.
[6] L. J. Su, "Machine Vision for Industrial Applications," ABI research report,
December 2019. Smart manufacturing
[7] R. Whitton, "Mobile Robotics and Autonomous Material Handling for
Logistics and Warehousing," ABI research report, November 2019.
[8] D. Sabella, H. Moustafa, et al. "Toward fully connected vehicles: Edge
computing for advanced automotive communications," 5GAA White Paper,
October 2017.
[9] H. Moustafa, E. Schooler, J. McCarthy, "Reverse CDN in Fog Computing:
The life-cycle of video data in connected autonomous vehicles," IEEE Fog
World Conference, 2017.
[10] L. Gergs, "5G in Healthcare", ABI research report, July 2020.
[11] H. Moustafa, E. Schooler, G. Shen, S. Kamath, "Remote Monitoring and
Medical Devices Control in eHealth," IEEE WiMob, Workshop on eHealth
Pervasive Wireless Applications and Services, 2016.
[12] "Transforming the Network Edge Enables New breakthrough Time
Speech analytics," Intel-Verbio White Paper, December 2018.
[13] "Networks Functions Virtualization (NFV) Management and
Orchestration," ETSI GS NFV-MAN, 2014.
[14] T. Doan-Van et al., "Programmable First: Automated Orchestration
between MEC and NFV Platforms," IEEE Consumers Communication and
Networking Conference (CCNC), 2019.
[15] S. Dalmini, M. Ventura, and T. Magedanz, "Design of an Autonomous
Management and Orchestration for Fog Computing," IEEE International
Conference on Intelligent and Innovative Computing Applications
(ICONIC),2018.
[16] S. Dalmini, and M. Ventura, "Resource Management in Fog Computing:
Review," IEEE International Conference on Advances in Big Data, Computing
and Data Communication Systems (icABCD), 2019.

[17] G. Castellano, F. Esposito, and F. Risso, "A Distributed Orchestration
Algorithm for Edge Computing Resources with Guarantees," IEEE INFOCOM,
2019.
[18] G. Castellano, F. Esposito, and F. Risso, "A Service-Defined Approach for
Orchestration of Heterogeneous Applications in Cloud/Edge Platforms," IEEE
Transactions on Network and Service management, Vol. 16 No. 4, December
2019.
[19] L. Zanzi, F. Giust, and V. Sciancalepore, "M2EC: A Multi-tenant Resource
Orchestration in Multi-access Edge Computing Systems," IEEE Wireless
Communications and Networking Conference (WCNC), 2018.
[20] C. Sonmez, A. Ozgovde, and C. Ersoy, "Fuzzy Workload Orchestration
for Edge Computing," IEEE Transactions on Network and Service
management, Vol.16, No. 2, June 2019.
[21] C. Anglano, M. Canonico, and M. Guazzone, "EasyCloud: a Rule based
Toolkit for Multiplatform Cloud/Edge Service Management," IEEE 5th
international Conference for Fog and Mobile Computing (FMEC),2020.
[22] J. Aires et al., "Phased-vCDN Orchestration for flexible and efficient
usage of 5G edge infrastructures," IEEE conference on Network Function
Virtualization and Software Defined Networks(NFV-SDN), 2019.
[23] S. Guo et al., "Trusted Cloud-Edge Network Resource Management: DRL-
Driven Service Function Chain Orchestration for IoT," IEEE Internet of Things
Journal, Vol. 7, No. 7, July 2020.
[24] H. Jo, J. Ha, and M. Jeong, "Light-Weight Service Lifecycle Management
For Edge Devices In I-IoT Domain," IEEE International Conference on
Information and Communication Technology Convergence (ICTC),2018.
[25] S. Pe, M. Radovanovi, and M. Ivanovic, "An MQTT-based Resource
Management Framework for Edge Computing Systems," IEEE International
Conference on INnovations in Intelligent SysTems and Applications (INISTA),
2020.
[26] OpenStack, https://www.openstack.org/software/
[27] Kubernetes, https://kubernetes.io/
[28] Mesos, https://mesos.apache.org
[29] Akraino Edge Stack API, https://www.lfedge.org/wp-
content/uploads/2020/06/Akraino_Whitepaper.pdf
[30] M. C. Ogbauchi et al., "Context-Aware K8s Scheduler for Real-time
Distributed 5G Edge Computing Applications," IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),2019.
[31] NearbyComputing, https://www.nearbycomputing.com/
[32] InfluxDB, https://www.influxdata.com/
[33] Linkerd Service Mesh, https://linkerd.io/
[34] MongoDB, https://www.mongodb.com/
[35] OPNFV Barometer Containers,
https://wiki.opnfv.org/display/fastpath/Barometer+Containers
[36] User Interface for Resource Control feature,
https://www.kernel.org/doc/html/latest/x86/resctrl.html
[37] CRI-RM, https://github.com/intel/cri-resource-manager
[38] T. Metsch, O. Ibidunmoye, V. Bayon-Molino, J. Butler, F. Hernández-
Rodriguez, and E. Elmroth. "Apex Lake: A Framework for Enabling Smart
Orchestration", In Proceedings of the Industrial Track of the 16th International
Middleware Conference (Middleware Industry '15), 2015.
[39] Kubernetes – Customer Resources,
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-
resources/.
[40] Omid Alipourfard et al., "Cherrypick: adaptively unearthing the best cloud
configurations for big data analytics", USENIX Conference on Networked
Systems Design and Implementation (NSDI'17).
[41] Bin Li et al., "RLDRM: Closed Loop Dynamic Cache Allocation with
Deep Reinforcement Learning for Network Function Virtualization", NetSoft
2020.

